Package: SpatFD 0.0.1

SpatFD: Functional Geostatistics: Univariate and Multivariate Functional Spatial Prediction

Performance of functional kriging, cokriging, optimal sampling and simulation for spatial prediction of functional data. The framework of spatial prediction, optimal sampling and simulation are extended from scalar to functional data. 'SpatFD' is based on the Karhunen-Loève expansion that allows to represent the observed functions in terms of its empirical functional principal components. Based on this approach, the functional auto-covariances and cross-covariances required for spatial functional predictions and optimal sampling, are completely determined by the sum of the spatial auto-covariances and cross-covariances of the respective score components. The package provides new classes of data and functions for modeling spatial dependence structure among curves. The spatial prediction of curves at unsampled locations can be carried out using two types of predictors, and both of them report, the respective variances of the prediction error. In addition, there is a function for the determination of spatial locations sampling configuration that ensures minimum variance of spatial functional prediction. There are also two functions for plotting predicted curves at each location and mapping the surface at each time point, respectively. References Bohorquez, M., Giraldo, R., and Mateu, J. (2016) <doi:10.1007/s10260-015-0340-9>, Bohorquez, M., Giraldo, R., and Mateu, J. (2016) <doi:10.1007/s00477-016-1266-y>, Bohorquez M., Giraldo R. and Mateu J. (2021) <doi:10.1002/9781119387916>.

Authors:Martha Patricia Bohorquez Castañeda [aut, cre], Diego Alejandro Sandoval Skinner [aut], Angie Villamil [aut], Samuel Hernando Sanchez Gutierrez [aut], Nathaly Vergel Serrano [ctb], Miguel Angel Munoz Layton [ctb], Valeria Bejarano Salcedo [ctb], Venus Celeste Puertas [ctb], Ruben Dario Guevara Gonzalez [aut], Joan Nicolas Castro Cortes [ctb], Ramon Giraldo Henao [aut], Jorge Mateu [aut]

SpatFD_0.0.1.tar.gz
SpatFD_0.0.1.zip(r-4.5)SpatFD_0.0.1.zip(r-4.4)SpatFD_0.0.1.zip(r-4.3)
SpatFD_0.0.1.tgz(r-4.4-any)SpatFD_0.0.1.tgz(r-4.3-any)
SpatFD_0.0.1.tar.gz(r-4.5-noble)SpatFD_0.0.1.tar.gz(r-4.4-noble)
SpatFD_0.0.1.tgz(r-4.4-emscripten)SpatFD_0.0.1.tgz(r-4.3-emscripten)
SpatFD.pdf |SpatFD.html
SpatFD/json (API)

# Install 'SpatFD' in R:
install.packages('SpatFD', repos = c('https://mpbohorquezc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • Mex_PM10 - Air quality data of Mexico
  • NO2 - Air quality data of Mexico
  • PM10 - PM10 of Bogota, Colombia
  • coord - Coordinates of measurement stations Bogota, Colombia
  • coord_NO2 - Coordinates of air quality data of Mexico
  • coord_PM10 - Coordinates of air quality data of Mexico
  • map - Map of Bogota, Colombia
  • map_mex - Map of Mexico
  • vowels - Imaginary thinking of the five Spanish vowels
  • vowels_coords - Coordinates of electrodes from the vowels data set

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.70 score 7 scripts 482 downloads 25 exports 118 dependencies

Last updated 5 months agofrom:88f2d81648. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-winOKNov 20 2024
R-4.5-linuxOKNov 20 2024
R-4.4-winOKNov 20 2024
R-4.4-macOKNov 20 2024
R-4.3-winOKNov 20 2024
R-4.3-macOKNov 20 2024

Exports:classificationCOK_crossval_looCOKS_scores_lambdascreate_mcovCrossSpatFDcrossval_looFD_optimal_designgenerate_basisgfd_clasif_datagfd_variog_geoRgfdataggmap_KSggplot_KSKS_scores_lambdasmclass_datamean_meanprint.OptimalSpatialDesignrecons_fdscoressim_functional_processSpatFDsummary.COKS_predsummary.gfdatasummary.KS_predsummary.SpatFD

Dependencies:abindashaskpassbase64encbitopsbslibcachemclassclassIntcliclustercodetoolscolorspacecpp11crosstalkcurldata.tableDBIdeSolvedigestdoParalleldplyre1071evaluatefansifarverfastmapfdafda.uscfdsFNNfontawesomeforeachfsgenericsgeoRggplot2gluegstatgtablehdrcdehighrhtmltoolshtmlwidgetshttrintervalsisobanditeratorsjquerylibjsonlitekernlabKernSmoothknitrkskSampleslabelinglaterlatticelazyevallifecyclelocfitmagrittrMASSMatrixmclustmemoisemgcvmimemulticoolmunsellmvtnormnlmeopensslpcaPPpillarpkgconfigplotlyplyrpracmapromisesproxypurrrR6rainbowrappdirsRColorBrewerRcppRCurlreshaperlangrmarkdowns2sassscalessfsftimespspacetimesplancsstarsstringistringrSuppDistssystibbletidyrtidyselecttinytexunitsutf8vctrsviridisLitewithrwkxfunxtsyamlzoo

Readme and manuals

Help Manual

Help pageTopics
Air quality data of Bogota, ColombiaAirQualityBogota
Classification Function for Functional Dataclassification
Leave-One-Out Cross-Validation for Functional cokrigingCOK_crossval_loo
Air quality data of MexicoCOKMexico
Functional cokrigingCOKS_scores_lambdas
Coordinates of measurement stations Bogota, Colombiacoord
Coordinates of air quality data of Mexicocoord_NO2
Coordinates of air quality data of Mexicocoord_PM10
Create Covariance Matrices given a series of spatial model parameterscreate_mcov
Creates univariate and multivariate CrossSpatFD object to perform crossed validation for functional spatial prediction.CrossSpatFD
Leave-One-Out Cross-Validation for Functional Krigingcrossval_loo
Optimal Spatial Design For Functional DataFD_optimal_design
Creates functional ortogonal basis as fd object.generate_basis
Divide the data in train and test datasetgfd_clasif_data
Generate Variograms for Functional Data from a gfdata objectgfd_variog_geoR
Creates gfdata objects.gfdata
Map plot of a 'KS_pred' objectggmap_KS
ggplot of predicted functionsggplot_KS
Functional KrigingKS_scores_lambdas
map of Bogota, Colombiamap
map of Mexicomap_mex
Get the mean of means for each classmclass_data
Calculate Mean Functions for Each Classmean_mean
Air quality data of MexicoMex_PM10
Air quality data of MexicoNO2
PM10 of Bogota, ColombiaPM10
Print of OptimalSpatialDesign objectsprint.OptimalSpatialDesign
Linear combinations for functional krigingrecons_fd
Spatial random field of scoresscores
Simulation of unconditional or conditional functional spatial process.sim_functional_process
Creates univariate and multivariate SpatFD objects.SpatFD
Summary of COKS_pred objectssummary.COKS_pred
Summary of gfdata objectssummary.gfdata
Summary of KS_pred objectssummary.KS_pred
Summary of SpatFD objectssummary.SpatFD
Imaginary thinking of the five Spanish vowelsvowels
Coordinates of electrodes from the vowels data setvowels_coords